工業製造
産業用モノのインターネット | 工業材料 | 機器のメンテナンスと修理 | 産業プログラミング |
home  MfgRobots >> 工業製造 >  >> Manufacturing Technology >> 3Dプリント

Filastruder を使用してマスクをリサイクルする方法

フェイスマスク、 COVID-19 の拡散に対する防御の最前線である感染性病原体の吸入と感染を防ぐために設計されたシンプルなデバイスは、世界中の何十億もの人々の生活に影響を与えています。

世界的な大流行が始まって以来、 フェイスマスクの使用は必要であり、多くの場合義務でした。しかし、フェイスマスクがこれまでに行ってきたすべての功績とは裏腹に、フェイスマスクの廃止は、より緊急の措置を支持してほとんど無視されてきた、記念碑的な生態学的課題を表しています。懸念事項 .世界中で毎月約 1,290 億個の人工呼吸器が使用されていると推定されており、そのほとんどは使い捨て用に設計されています。この個人用保護具 (PPE) が環境に与える影響を軽減することは、大規模な課題です。マスクは分解するのに 400 年以上かかることがあるためです。

国連貿易開発会議によると、マスクやその他のパンデミック関連の廃棄物の約 75 % が最終的に埋立地に運ばれるか、海に浮かぶことになります。 従来のシステムでは焼却やリサイクルができないため、正確にはどうすればよいのでしょうか?

イギリスのブリストル大学の研究チームが解決策を見つけたようです .このイニシアチブの背後にあるアイデアは、サージカル マスクを収集し、それらを 3D プリント材料、つまりフィラメントに変換することです。

最初のテストで、チームは欠陥のあるマスク 1 kg を供給した PPE メーカーに連絡しました。 (ノーズ ワンドの緩みまたは欠落) ポリプロピレン タイプ IIR 製 無料。マスクは、EN14683:2019 Type IIR 規格に準拠した認定済みの外科用製品でした。

画像 1:プロジェクトに提供されたマスク。出典:ブリストル大学

プロセスの最初のステップは、耳から弾性ストリップと鼻にある可能性のある金属箔を取り除くことを超えて、2 枚のノンスティック ペーパーの間でマスクのスタックをアイロンで加熱することです。

<強い>

画像 2:シートになったマスク。出典:ブリストル大学

これにより、固体シートに溶けます これにより、作業がはるかに簡単になり、研削盤の目詰まりが防止されます。 得られたシートはブレンダーに通され、細かいペレットが生成されます 押し出しプロセスに適した青色のポリプロピレンです。

画像 3:得られたペレット。出典:ブリストル大学

Before moving on to the next step, it is necessary to clarify that the masks are subjected to high temperatures which the researchers consider sufficient to kill possible COVID-19 bacteria and disinfect the material. However, the ones they used in the project had not been used previously.

In the third step, the pellets end up in the machin e (a wire drawing machine) that turns them into filaments . To convert the mask material into the filament needed for a 3D printer, the researchers used Filastruder, an open source product that is constantly evolving thanks to the community of users who share their designs and configurations.

<強い>

Image 4:Filastruder. Fuente:Filastruder.

The Filastruder is capable of producing filament on demand in the right colour and size for any 3D project. Its operation is simple, just set the desired extrusion temperature, wait until it is reached in the extruder, add the pellets and dyes in the chosen hopper (it can even be a plastic bottle) and turn on the gear motor to start the extrusion . To carry out the winding of the filament and facilitate its subsequent processing with a 3D printer, the ideal option is to use the Filawinder; designed especially for Filastruder users, which automatically winds the filament coming out of the drawing machine.

<強い>

Image 5:Filawinder. Source:Filastruder.

It is advisable to place the Filastruder at a height of 1.5 m and let the filament hang down from there, so that it cools down before it touches the ground. The Filastruder should not be placed in a place where there are drafts, as these would cause the filament to oscillate and deform.

In this case, the team chose to mount the machine vertically and print a hopper to work in this position. The nozzle reached 170 °C and the pellets that passed through it were converted into filament. The team noted that in the first test the filament had only had an average diameter of 1.5 mm, but the results indicated that with further refinement it was be possible to achieve the standard 1.75 mm diameter, within a reasonable tolerance , so the nozzle was modified (drilled from 1.75 mm to 1.9 mm) and a more powerful feed mechanism was developed to get closer to the target diameter. Still, by activating the extrusion multiplier in the slicing software, the team was able to successfully print objects using the thin polypropylene filament.

<強い>

Image 6:Vertical mounting. Source:University of Bristol.

Polypropylene (PP) is notorious for being difficult to 3D print , as it does not adhere well to common printing surfaces. However, it does have good adhesion between layers. The trick employed by these scientists was to use normal transparent tape over the base, as it is often also made of PP. Using this method, it was very easy to 3D print with their limited rudimentary stock of filament on a low-cost 3D printing machine. It follows that the problems currently lie in the production of the filament and not in 3D printing with it.

Image 7:Resulting piece. Source:University of Bristol.

The filament obtained , which is wound up, reached 7 metres in length . The piece of material that can be seen in the images provided by the University of Bristol is the result of transforming less than a third of an entire mask into filament.

Having achieved this result, the researchers are now looking at new challenges, such as the possibility of processing mixed materials by treating the mask with the handles in the same process. They also question whether the work can be automated on a large scale or whether universities would be able to create their own circular economy and oversee the distribution, collection and recycling of PPE.

Projects like the one at the University of Bristol can also be found in Spain.

For example, a group of scientists at the Universitat Politècnica de Catalunya (UPC) have devised a system for designing a mask created from used anti-covid masks . The mask has layers of recycled polypropylene fibre from discarded and properly sterilised surgical masks. A protective layer of silver oxide and cerium nanoparticles is also included, due to their antiviral and antibacterial function. The aim is to obtain a product that is protective, functional, innovative and sustainable. The recycling of used and discarded face masks begins with their autoclave sterilisation. The material is then granulated in such a way that polypropylene pellets are obtained for further processing and use to create a plastic filament which, using a 3D printer, results in a new mask. A protective coating with cerium oxide ions and silver can be applied to the printed mask, which increases its antibacterial protection. In addition to being reusable, the masks produced in this way can also be recycled into new masks, thus minimising waste generation to a minimum.

In the case of FILMA , a team made up of 4 young people, they came up with a project to recycle surgical masks that aims to give them a second life by transforming them into filament for 3D printers that can be used to create new products. Before being transformed into filament, the masks undergo a disinfection treatment. The materials are then separated and sent to a shredder that cuts them into small pieces. These pieces of plastic are mixed with some plastic pellets and finally fed into an extruder which melts the plastic, thus forming the filament. In addition to their own production of items from the filament, together with other brands, they design processes, campaigns and sustainable products to introduce the circular economy in companies and demonstrate to the new generations their commitment to the changes that are necessary for a better future.


3Dプリント

  1. AWSを使用してCloudFormationテンプレートを作成する方法
  2. ステップバイステップ:IIoTを使用してPLCからデータを取得する方法は?
  3. IoTを使用してAIの準備をする方法
  4. IoTが私たちの周りの世界をどのように混乱させているか
  5. 再帰を使用してJavaで文字列を逆にする方法
  6. Python Average:Python でリストの AVERAGE を見つける方法
  7. PHPを使用してArduinoと通信するWebサイトを作成する方法
  8. ArduinoNanoを使用して自宅でミニオシロスコープを作成する方法
  9. プリント回路基板のリサイクル方法
  10. CNCマシンを使用して部品を設計する方法は?
  11. CNC 旋盤使用時の不一致を回避する方法